Phytophthora management in potato cultivation: an example of a complex social-ecological system

Francine Pacilly

EAPR: July 2014

The Netherlands and late blight

High infection pressure Maritime climate • High potato density Problem Annual losses of 125 M€ 10-15 fungicide applications/season Decrease in organic potato production Sanitary regulations Yellow/Red Cards Anonymous hotline

The Netherlands

Objectives

How can actors join forces to achieve sustainable management of Phytophthora infestans by using resistant cultivars?

 Analyse Phytophthora management as social-ecological system

 II. Analyse systems dynamics → development of an agent-based model (ABM)
 <u>III. Scenario testing with ABM's</u>

IV. Model use/gaming with stakeholders

Method: Social-ecological system

- Multi-disciplinary research Institution
- Interaction: within and between levels
- Feedback mechanisms: learning & adaptability
- Self-organisation

Method: Analyse system components

Social factors
In-depth interviews

Farmers
Breeding/Trading companies
Experts

Ecological factors

Literature

Phytophthora management

Main management strategies:

Fungicide application

Removal of infection sources

Cull piles

Volunteers

Field infection

Resistant cultivars

Towards sustainable management

(Schöber, 1992)

Resistant cultivars

Many R-genes (*S. demissum*) have been broken (1950)
 Long breeding process (± 20 years of introgression)
 Discovery of new R-genes in other *Solanum* species

Protect new varieties for breakdown of resistance
A Resistance management

Resistance management strategies

Stacking of R-genes

Protect resistant cultivars with fungicides

Cultivar allocation strategies

- Diversification of cultivars (with different R-genes)
 - Mixtures
 - Spatial/Temporal

Involved stakeholders

Farmers

Fungicide suppliers

Breeding/Trading companies

Government & Control bodies

Resistant cultivars

Fungicides

Remove infection sources

Farmers: Phytophthora management

	Conventional	Organic
Rotation	1:2-1:4	1:6-1:8
<i>Phytophthora</i> management	Fungicides	Presprouting Early/Resistant varieties (Copper spraying)
Biggest problem in potato production	Bacteria, Nematodes e.g.	Phytophthora

Differences in Phytophthora management

Related to personal characteristics: Risk-perception, innovativeness, accuracy, economic incentives and environmental care

Farmers: Cultivar selection

Resistant cultivars

Positive

- Smaller risk for infection
- Less fungicides \rightarrow less costs & time
- Negative
 - Market acceptance
 - Other characteristics (yield etc.)
 - Fungicide application is easy & cheap

Breeding/Trading Companies

Current new resistant cultivars
 Follow market demands
 Competition

Farmers buy and sell from companies

Company	Resistant cultivar
Agrico	Carolus
Agrico	Athlete
KWS	Vitabella
Meijer	Bionica
Danespo	Sarpo Mira

Conclusion

- Phytophthora infection is the result of both social and ecological processes
- Many stakeholders play a role in *Phytophthora* management
- Resistant cultivars are important for sustainable management:
 - Small market
 - Resistance management

Thanks for your attention!

More information:

francine.pacilly@wur.nl

Thanks to : J.C.J. Groot, G.J. Hofstede, E.T. Lammerts van Bueren

