

Improving efficiency of potato store operation in Great Britain

AHDB Potato Council research project R439 and *Storage 2020* knowledge transfer campaign

Adrian Cunnington, Sutton Bridge CSR*

Steve Saunders, Sutton Bridge CSR Jon Swain, Farm Energy Centre Oliver Coe, Farm Energy Centre United Kingdom adrian.cunnington@potato.ahdb.org.uk

Cost-effective storage

- Maximise return
 - Maintain quality
 - Market opportunity
- Control costs
 - Limit losses: moisture/disease
 - Optimise energy use: avoid unnecessary expense

the voice of storage

Energy use: previous survey

Aims

- To explore the detail behind these differences to explain them more precisely
- Identify areas where true savings are realistically achievable
- Calculate cost-benefit information
- Obtain data to assist the introduction of new, efficient technologies

Assessments

- Targeted a range of farms for each aspect
- Sampling approach or short-term logging
- Aim to quantify through direct measurement of store/crop condition or
- Make an assessment of equipment performance

the voice of storage

Areas of interest

- Energy use measurement
- Air leakage
- Refrigeration efficiency
- Air distribution efficiency
- Temperature uniformity
- Insulation performance
- Changes in store hardware
- Humidification
- Carbon footprint

the voice of storage

the voice of storage

Potato store air leakage

Single hole equivalent for 1000/1500t stores > Responsible for *c*. 5% of energy use if well-sealed. Responsible for 35-55% of a store's energy use if not. 5.5 m²

1m²

Storage refrigeration efficiency

Coefficient of Performance (COP) : kW electricity > kW cooling

Refrigeration: condenser fans

- Condensers dissipate heat from fridge systems
- Traditionally used pressure switched fans where more units come on as load increases

ON/OFF DEPENDING ON HEAT LOAD

the voice of storage

Upgrade: condenser fan replacement

 Removal of pressure switched units; replaced with continuously variable fan systems

Fridge condenser fan upgrade

Coefficient of Performance (COP) : kW electricity > kW cooling

the voice of storage

Refrigeration efficiency measurement

the voice of storage

POTATO

Fridge efficiency overall

Coefficient of Performance (COP) : kW electricity > kW cooling

the voice of storage

Air distribution in overhead ventilated stores

- Air distribution efficiency:
 - Fans should be sized for worst case conditions and energy savings are then possible from inverters
- Temperature uniformity:
 - Air divider curtains can help to even out air flow in 'overhead throw' stores but not a complete solution. Other affordable upgrades being evaluated.

the voice of storage

- Leaky buildings:
 - Between 30% and 50% energy savings possible
- Refrigeration systems:
 - Best to worst systems 2.5 times different
 - Condenser fan change can pay back in 5 years
- Insulation:
 - Upgrades offer energy savings of up to 10%

the voice of storage

- Energy monitoring:
 - continues to highlight the difference between stores with over twice as much energy still used in some than others

Market	2011 (kWh/tonne/day)		2012 (kWh/tonne/day)	
	Highest	Lowest	Highest	Lowest
Fresh	0.21	0.43	0.35	0.51
Processing	0.10	0.20	0.11	0.34

the voice of storage

Store management survey

 showed industry is moving to better storage systems but more change is still required

the voice of storage

Actions

- Increase use of metering on potato stores
- Promote the uptake of modified and positively-ventilated box storage
- Encourage adoption of energy-saving technologies, eg inverters, adiabatic cooling
- Run Potato Council Storage 2020 campaign to raise awareness of the need for better uniformity in stores across GB

e voice of storage

Storage 2020 campaign

Aain and Personnel Doors

Main doors are typically the leakiest aspect of a potato store and can contribute heavily to heat gain/cooling losses. Potato Council Project R439 "Reducing the Energy Usage and Carbon Footprint of Potato Storage", carried out this year, showed that air leakage can contribute up to 50% towards energy costs, of which the main door can contribute 30%.

A good example of typical cooling loss around the seals of an up-an-over door is shown in this

- Major international storage conference: 13 February 2014 at Peterborough
- StoreCheck nationwide audit service from 2014
 - Open day: 50 years of storage research at Sutton Bridge 3 July 2014

Acknowledgements

- AHDB Potato Council
- Research teams at Sutton Bridge CSR and Farm Energy Centre
- Stroma Technology
- Business Edge
- ebm-Papst
- Growers who provided access to stores

the voice of storage