Twenty years of Aphid survey in potatoes in the South of Belgium

Jansen JP
Walloon Agricultural Centre, Life Science Department, Plant Protection and Ecotoxicology unit
Gembloux, Belgium
Aphids in potato

- One of the most important economic pest in potato in Belgium
- Known since a long time (Roland, 1946)
 - Confusion of pest status for seed potato and common potato production
- Better definition of pest status
 - Seed potato: Virus transmission => permanent protection
 - Potato for the industry and fresh market: direct yield losses due to feeding activity
 - Depending on the aphid population density, high variation from year to year
 - Threshold value of 10 aphids/full leaf (5 <= 20)
 - Space for IPM and skip systematic and blind use of insecticide
Aphid species found since 1994

Dangerous
- *Aphis nasturtii* (+++)
- *Macrosiphum euphorbiae* (++)
- *Myzus persicae* (+)
- *Aphis frangulae* group (+)

Occasional
- *Aulacorthum solani*
- *Aphis fabae*
Decision support system

- Established since 1994 to help farmers
- Avoid unnecessary sprays
- Adapt the protection to the situation
 - Two group of Aphid species in term of sensitivity to insecticides
 - Timing of application, one application is enough if correctly positioned
Field observations

• Experience of aphid control in winter wheat, DSS developed in the 70-80’s
 – Aphids and aphid antagonist visual counts
 – Aphid outbreak risk assessment

• Weekly, from mid June to the end of July/Mid-August

• Aphids counted on 200 leaves/field
 – 100 leaves lower part of the plant (Aphis group)
 – 100 leaves upper part of the plant

• Aphid antagonists counted in a same time on the same leaves
 – Aphid mummies (parasitic wasps)
 – Ladybird, hoverfly and lacewings eggs and larvae
Pommes de terre

Stade: Chaine
Localité: Cotinière de Châl
Date: 22.07.12

Variété: Challenger

4 x 25 feuilles INFÉRIEURES

PUCERONS

4 x 25 feuilles SUPÉRIEURES

PARASITÉS

MYCOSÉS

Œufs CHRYSOPE

Larves chrysopes

Œufs COCCINELLES

Larves de coccinelles

Œufs SYRPHES

Larves de syrphes

AUTRES
Aphid antagonists: Parasitic hymenoptera

• Aphidiidae mainly, a few Aphelinidae
• Key beneficial for early aphid infestation (June)
 – Up to 80% parasitism
 – Complete control of low aphid population
 – Help aphid predator if higher population by slowing down aphid development
• Specific study in 2000-2001 (Jansen, 2005)

<table>
<thead>
<tr>
<th>Aphid species</th>
<th>Parasitism rate</th>
<th>Pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphis nasturtii</td>
<td>3.0%</td>
<td>***</td>
</tr>
<tr>
<td>Macrosiphum euphorbiae</td>
<td>10.0%</td>
<td>**</td>
</tr>
<tr>
<td>Myzus persicae</td>
<td>36.1%</td>
<td>*</td>
</tr>
<tr>
<td>Aulacorthum solani</td>
<td>69.1%</td>
<td>-</td>
</tr>
</tbody>
</table>

EAPR Brusel 6-11 July 2014
Aphid antagonists (2): aphid predators

• Larvae of ladybirds, hoverflies and lacewings
• Key beneficial in July, when aphid population are higher
• Same species as other field crops (e.g. wheat, maize):
 – *Coccinella septempunctata*, *Propylea quatuordecimpunctata*
 – *Episyrphus balteatus*
 – *Chrysoperla carnea*
Balance beneficial – pest?

• Beneficial Arthropod Index (BAI)
 – Visual count:
 • One larvae predator = 1pts
 • One predator egg = 0.2 pts
 • One aphid mummies (parasitic wasp or fungi)= 0.2 pts
 – Total of beneficial for the count
 – Total of the aphids for the same count
 – => Beneficial Arthropod Index (BAI): beneficial arthropods/100 aphids
• The more beneficial you find, the less aphids you have at peak
• Model, BAI > 2, no aphids > 10/leaf (1994-2000, 149 fields)
• Validation: 2001-2013 (147 fields), no exception, still working....
• 2 larvae of predators or 10 aphid mummies for 100 aphids is enough for biological control
1994-2013 Overview

• 20 year of observation (CRA-W, Carah, Beitem-Kruishoutem)
• 296 fields followed weekly for aphids and aphid antagonists
Aphid population at peak (threshold value of 10 aphid/leaf)

- Insecticides required in only about 10% of the fields
- Only 5% if 1994 and 1996 results removed

<table>
<thead>
<tr>
<th>Year</th>
<th>x<1</th>
<th>1<x<5</th>
<th>5<x<10</th>
<th>x>10</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>1995</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>1996</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>1997</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>1998</td>
<td>21</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>1999</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>2000</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>2001</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>2002</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>2003</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>2004</td>
<td>4</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>2005</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>2006</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>2007</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2008</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>2009</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2010</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>2012</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>2013</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>161</td>
<td>80</td>
<td>22</td>
<td>33</td>
<td>296</td>
</tr>
</tbody>
</table>

55% 27% 7% 11%
89% (~9/10)
What happens in 1994 and 1996

- High infestation of *Aphis nasturtii*
- Use of insecticides poorly active against this species but highly active against aphid antagonists
- Aphid outbreak
Need for effective compound

• Two groups of aphids, two different control methods
 – *Aphis nasturtii* and *Aphis frangulae*
 • Insecticides as Pymetrozine, Flonicamide, Thiacloprid,…
 • Spray volume of at least 300 l/ha (specific intervention ?)
 – Other aphids
 • Classical insecticides (pyrethroids, pirimicarb,…)
 • Spray volume of 150-200 l/ha (can be applied with fungicides…)
Need for selective compound

Selectivity of Plant Protection Products for beneficial arthropods in Potato - 01.02.2012

<table>
<thead>
<tr>
<th>Until the 10th of June</th>
<th>10th to the 30th of June</th>
<th>1st to the 31st of July</th>
<th>After the 1st of August</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungicides</td>
<td>Insecticides</td>
<td>Fungicides</td>
<td>Fungicides</td>
</tr>
<tr>
<td>Azoxytrobine</td>
<td>B Enatral + Mancozeb</td>
<td>Azoxytrobine</td>
<td>Azoxytrobine</td>
</tr>
<tr>
<td>Benalaxyl + Mancozeb</td>
<td>C YZOFAMIDE</td>
<td>Benalaxyl + Mancozeb</td>
<td>Benalaxyl + Mancozeb</td>
</tr>
<tr>
<td>Benthiavalcir + Mancozeb</td>
<td>C YZOFAMIDE</td>
<td>Benthiavalcir + Mancozeb</td>
<td>Benthiavalcir + Mancozeb</td>
</tr>
<tr>
<td>Boscalid + Pyraclostrobine</td>
<td>C YZOFAMIDE</td>
<td>Boscalid + Pyraclostrobine</td>
<td>Boscalid + Pyraclostrobine</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>CYZOFAMIDE</td>
<td>Chlorothalonil</td>
<td>Chlorothalonil</td>
</tr>
<tr>
<td>Chlorothalonil + Propamocarb</td>
<td>CYZOFAMIDE</td>
<td>Chlorothalonil + Propamocarb</td>
<td>Chlorothalonil + Propamocarb</td>
</tr>
<tr>
<td>Copper Hydroxide</td>
<td>Copper Hydroxide</td>
<td>Copper Hydroxide</td>
<td>Copper Hydroxide</td>
</tr>
<tr>
<td>Copper Oxylorhodide</td>
<td>Copper Oxylorhodide</td>
<td>Copper Oxylorhodide</td>
<td>Copper Oxylorhodide</td>
</tr>
<tr>
<td>Copper Sulfate</td>
<td>Copper Sulfate</td>
<td>Copper Sulfate</td>
<td>Copper Sulfate</td>
</tr>
<tr>
<td>Cyazofamid</td>
<td>Cyazofamid</td>
<td>Cyazofamid</td>
<td>Cyazofamid</td>
</tr>
<tr>
<td>Cyloxanil + Famoxadone</td>
<td>Cyloxanil + Famoxadone</td>
<td>Cyloxanil + Famoxadone</td>
<td>Cyloxanil + Famoxadone</td>
</tr>
<tr>
<td>Cyloxanil + Mancozeb</td>
<td>Cyloxanil + Mancozeb</td>
<td>Cyloxanil + Mancozeb</td>
<td>Cyloxanil + Mancozeb</td>
</tr>
<tr>
<td>Cyloxanil + Metiram</td>
<td>Cyloxanil + Metiram</td>
<td>Cyloxanil + Metiram</td>
<td>Cyloxanil + Metiram</td>
</tr>
<tr>
<td>Cyloxanil + Propamocarb</td>
<td>Cyloxanil + Propamocarb</td>
<td>Cyloxanil + Propamocarb</td>
<td>Cyloxanil + Propamocarb</td>
</tr>
<tr>
<td>Dimethoermie + Mancozeb</td>
<td>Dimethoermie + Mancozeb</td>
<td>Dimethoermie + Mancozeb</td>
<td>Dimethoermie + Mancozeb</td>
</tr>
<tr>
<td>Fenamidone + Mancozeb</td>
<td>Fluazinam</td>
<td>Fenamidone + Mancozeb</td>
<td>Fluazinam</td>
</tr>
<tr>
<td>Fluazinam</td>
<td>Fluopicolid + Propamocarb</td>
<td>Fluazinam</td>
<td>Fluazinam</td>
</tr>
<tr>
<td>Fluopicolid + Propamocarb</td>
<td>Mancozeb</td>
<td>Fluopicolid + Propamocarb</td>
<td>Mancozeb</td>
</tr>
<tr>
<td>Mancozeb</td>
<td>Mancozeb + Zoxamide</td>
<td>Mancozeb + Zoxamide</td>
<td>Mancozeb + Zoxamide</td>
</tr>
<tr>
<td>Mandipropamid</td>
<td>Mandipropamid</td>
<td>Mancozeb + Zoxamide</td>
<td>Mandipropamid</td>
</tr>
<tr>
<td>Maneb</td>
<td>Maneb + Fluazinam</td>
<td>Maneb + Fluazinam</td>
<td>Maneb + Fluazinam</td>
</tr>
<tr>
<td>Metalaxyl-M + Fluazinam</td>
<td>Metalaxyl-M + Fluazinam</td>
<td>Metalaxyl-M + Fluazinam</td>
<td>Metalaxyl-M + Fluazinam</td>
</tr>
<tr>
<td>Metalaxyl-M + Mancozeb</td>
<td>Metalaxyl-M + Mancozeb</td>
<td>Metalaxyl-M + Mancozeb</td>
<td>Metalaxyl-M + Mancozeb</td>
</tr>
</tbody>
</table>

Legend

- **Harmless**
- **Slightly harmful**
- **Moderately harmful**
- **Harmful**
- **Not registered for this period**

Authorised in Organic Farming

See Poster session (Poster n° 302)

EAPR Brusel 6-11 July 2014
Conclusions

• Aphids are still a pest in potato
 – No insecticide or insecticides every year is not the best solution

• Decision support systems help the farmers to adapt the control to the situation
 – No treatments most of the time
 – Treatment (product, timing of application) adapted to the aphid species and the situation
 – Selective insecticides when possible

• 1 insecticide every 10 years ⇔ systematic and blind use of insecticide (1-3 insecticides/year)
 – About 90% of Insecticide reduction simply by considering aphids AND beneficial arthropods
Conclusions

• More education and communication to fight against popular belief
 – Insecticides can promote pests instead of controlling them
 – “Insurance” or preventive treatment can be worst that no treatment at all
Thank you for your attention